3.85 \(\int \frac{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\sqrt{-a+b x^3}} \, dx\)

Optimal. Leaf size=271 \[ \frac{2 \sqrt{b x^3-a}}{\sqrt [3]{b} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )}-\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7+4 \sqrt{3}\right )}{\sqrt [3]{b} \sqrt{-\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{b x^3-a}} \]

[Out]

(2*Sqrt[-a + b*x^3])/(b^(1/3)*((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)) - (3^(1/4)*Sq
rt[2 + Sqrt[3]]*a^(1/3)*(a^(1/3) - b^(1/3)*x)*Sqrt[(a^(2/3) + a^(1/3)*b^(1/3)*x
+ b^(2/3)*x^2)/((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*EllipticE[ArcSin[((1 + Sqr
t[3])*a^(1/3) - b^(1/3)*x)/((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)], -7 + 4*Sqrt[3]]
)/(b^(1/3)*Sqrt[-((a^(1/3)*(a^(1/3) - b^(1/3)*x))/((1 - Sqrt[3])*a^(1/3) - b^(1/
3)*x)^2)]*Sqrt[-a + b*x^3])

_______________________________________________________________________________________

Rubi [A]  time = 0.160202, antiderivative size = 271, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.028 \[ \frac{2 \sqrt{b x^3-a}}{\sqrt [3]{b} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )}-\frac{\sqrt [4]{3} \sqrt{2+\sqrt{3}} \sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}+\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}{\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x}\right )|-7+4 \sqrt{3}\right )}{\sqrt [3]{b} \sqrt{-\frac{\sqrt [3]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}-\sqrt [3]{b} x\right )^2}} \sqrt{b x^3-a}} \]

Antiderivative was successfully verified.

[In]  Int[((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)/Sqrt[-a + b*x^3],x]

[Out]

(2*Sqrt[-a + b*x^3])/(b^(1/3)*((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)) - (3^(1/4)*Sq
rt[2 + Sqrt[3]]*a^(1/3)*(a^(1/3) - b^(1/3)*x)*Sqrt[(a^(2/3) + a^(1/3)*b^(1/3)*x
+ b^(2/3)*x^2)/((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)^2]*EllipticE[ArcSin[((1 + Sqr
t[3])*a^(1/3) - b^(1/3)*x)/((1 - Sqrt[3])*a^(1/3) - b^(1/3)*x)], -7 + 4*Sqrt[3]]
)/(b^(1/3)*Sqrt[-((a^(1/3)*(a^(1/3) - b^(1/3)*x))/((1 - Sqrt[3])*a^(1/3) - b^(1/
3)*x)^2)]*Sqrt[-a + b*x^3])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 13.7682, size = 224, normalized size = 0.83 \[ - \frac{\sqrt [4]{3} \sqrt [3]{a} \sqrt{\frac{a^{\frac{2}{3}} + \sqrt [3]{a} \sqrt [3]{b} x + b^{\frac{2}{3}} x^{2}}{\left (\sqrt [3]{a} \left (-1 + \sqrt{3}\right ) + \sqrt [3]{b} x\right )^{2}}} \sqrt{\sqrt{3} + 2} \left (\sqrt [3]{a} - \sqrt [3]{b} x\right ) E\left (\operatorname{asin}{\left (\frac{\sqrt [3]{a} \left (1 + \sqrt{3}\right ) - \sqrt [3]{b} x}{- \sqrt [3]{a} \left (-1 + \sqrt{3}\right ) - \sqrt [3]{b} x} \right )}\middle | -7 + 4 \sqrt{3}\right )}{\sqrt [3]{b} \sqrt{- \frac{\sqrt [3]{a} \left (\sqrt [3]{a} - \sqrt [3]{b} x\right )}{\left (\sqrt [3]{a} \left (-1 + \sqrt{3}\right ) + \sqrt [3]{b} x\right )^{2}}} \sqrt{- a + b x^{3}}} - \frac{2 \sqrt{- a + b x^{3}}}{\sqrt [3]{b} \left (\sqrt [3]{a} \left (-1 + \sqrt{3}\right ) + \sqrt [3]{b} x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((-b**(1/3)*x+a**(1/3)*(1+3**(1/2)))/(b*x**3-a)**(1/2),x)

[Out]

-3**(1/4)*a**(1/3)*sqrt((a**(2/3) + a**(1/3)*b**(1/3)*x + b**(2/3)*x**2)/(a**(1/
3)*(-1 + sqrt(3)) + b**(1/3)*x)**2)*sqrt(sqrt(3) + 2)*(a**(1/3) - b**(1/3)*x)*el
liptic_e(asin((a**(1/3)*(1 + sqrt(3)) - b**(1/3)*x)/(-a**(1/3)*(-1 + sqrt(3)) -
b**(1/3)*x)), -7 + 4*sqrt(3))/(b**(1/3)*sqrt(-a**(1/3)*(a**(1/3) - b**(1/3)*x)/(
a**(1/3)*(-1 + sqrt(3)) + b**(1/3)*x)**2)*sqrt(-a + b*x**3)) - 2*sqrt(-a + b*x**
3)/(b**(1/3)*(a**(1/3)*(-1 + sqrt(3)) + b**(1/3)*x))

_______________________________________________________________________________________

Mathematica [C]  time = 0.598886, size = 257, normalized size = 0.95 \[ \frac{2 \sqrt [3]{-a} \sqrt{-\frac{(-1)^{5/6} \left ((-a)^{2/3} \sqrt [3]{-b} x+a\right )}{a}} \sqrt{\frac{\sqrt [3]{-b} x \left (\sqrt [3]{-a}+\sqrt [3]{-b} x\right )}{(-a)^{2/3}}+1} \left (i \left (\left (3+\sqrt{3}\right ) \sqrt [3]{a} \sqrt [3]{-b}-\sqrt{3} \sqrt [3]{-a} \sqrt [3]{b}\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{-\frac{i \sqrt [3]{-b} x}{\sqrt [3]{-a}}-(-1)^{5/6}}}{\sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )+3 (-1)^{2/3} \sqrt [3]{-a} \sqrt [3]{b} E\left (\sin ^{-1}\left (\frac{\sqrt{-\frac{i \sqrt [3]{-b} x}{\sqrt [3]{-a}}-(-1)^{5/6}}}{\sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )\right )}{3^{3/4} (-b)^{2/3} \sqrt{b x^3-a}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[((1 + Sqrt[3])*a^(1/3) - b^(1/3)*x)/Sqrt[-a + b*x^3],x]

[Out]

(2*(-a)^(1/3)*Sqrt[-(((-1)^(5/6)*(a + (-a)^(2/3)*(-b)^(1/3)*x))/a)]*Sqrt[1 + ((-
b)^(1/3)*x*((-a)^(1/3) + (-b)^(1/3)*x))/(-a)^(2/3)]*(3*(-1)^(2/3)*(-a)^(1/3)*b^(
1/3)*EllipticE[ArcSin[Sqrt[-(-1)^(5/6) - (I*(-b)^(1/3)*x)/(-a)^(1/3)]/3^(1/4)],
(-1)^(1/3)] + I*((3 + Sqrt[3])*a^(1/3)*(-b)^(1/3) - Sqrt[3]*(-a)^(1/3)*b^(1/3))*
EllipticF[ArcSin[Sqrt[-(-1)^(5/6) - (I*(-b)^(1/3)*x)/(-a)^(1/3)]/3^(1/4)], (-1)^
(1/3)]))/(3^(3/4)*(-b)^(2/3)*Sqrt[-a + b*x^3])

_______________________________________________________________________________________

Maple [B]  time = 0.06, size = 952, normalized size = 3.5 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((-b^(1/3)*x+a^(1/3)*(1+3^(1/2)))/(b*x^3-a)^(1/2),x)

[Out]

2/3*I*a^(1/3)*3^(1/2)/b*(a*b^2)^(1/3)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)/b
*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2)*((x-1/b*(a*b^2)^(1/3))/(-3/2/b*(a
*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2)*(I*(x+1/2/b*(a*b^2)^(1/3)-1/2*
I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2)/(b*x^3-a)^(1/2)*Ellipt
icF(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2
)*b/(a*b^2)^(1/3))^(1/2),(-I*3^(1/2)/b*(a*b^2)^(1/3)/(-3/2/b*(a*b^2)^(1/3)-1/2*I
*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2))+2*I*a^(1/3)/b*(a*b^2)^(1/3)*(-I*(x+1/2/b*(a*b^
2)^(1/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2)*((x-1/b*(
a*b^2)^(1/3))/(-3/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2)*(I*(x+
1/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2
)/(b*x^3-a)^(1/2)*EllipticF(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)
/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2),(-I*3^(1/2)/b*(a*b^2)^(1/3)/(-3
/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2))-2/3*I/b^(2/3)*3^(1/2)*
(a*b^2)^(1/3)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*
b/(a*b^2)^(1/3))^(1/2)*((x-1/b*(a*b^2)^(1/3))/(-3/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2
)/b*(a*b^2)^(1/3)))^(1/2)*(I*(x+1/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3
))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2)/(b*x^3-a)^(1/2)*((-3/2/b*(a*b^2)^(1/3)-1/2*I*3
^(1/2)/b*(a*b^2)^(1/3))*EllipticE(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3
^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2),(-I*3^(1/2)/b*(a*b^2)^(1/
3)/(-3/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2))+1/b*(a*b^2)^(1/3
)*EllipticF(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3)
)*3^(1/2)*b/(a*b^2)^(1/3))^(1/2),(-I*3^(1/2)/b*(a*b^2)^(1/3)/(-3/2/b*(a*b^2)^(1/
3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2)))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ -\int \frac{b^{\frac{1}{3}} x - a^{\frac{1}{3}}{\left (\sqrt{3} + 1\right )}}{\sqrt{b x^{3} - a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(b^(1/3)*x - a^(1/3)*(sqrt(3) + 1))/sqrt(b*x^3 - a),x, algorithm="maxima")

[Out]

-integrate((b^(1/3)*x - a^(1/3)*(sqrt(3) + 1))/sqrt(b*x^3 - a), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (-\frac{b^{\frac{1}{3}} x - a^{\frac{1}{3}}{\left (\sqrt{3} + 1\right )}}{\sqrt{b x^{3} - a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(b^(1/3)*x - a^(1/3)*(sqrt(3) + 1))/sqrt(b*x^3 - a),x, algorithm="fricas")

[Out]

integral(-(b^(1/3)*x - a^(1/3)*(sqrt(3) + 1))/sqrt(b*x^3 - a), x)

_______________________________________________________________________________________

Sympy [A]  time = 4.04426, size = 112, normalized size = 0.41 \[ \frac{i \sqrt [3]{b} x^{2} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{\frac{b x^{3}}{a}} \right )}}{3 \sqrt{a} \Gamma \left (\frac{5}{3}\right )} - \frac{\sqrt{3} i x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b x^{3}}{a}} \right )}}{3 \sqrt [6]{a} \Gamma \left (\frac{4}{3}\right )} - \frac{i x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{\frac{b x^{3}}{a}} \right )}}{3 \sqrt [6]{a} \Gamma \left (\frac{4}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((-b**(1/3)*x+a**(1/3)*(1+3**(1/2)))/(b*x**3-a)**(1/2),x)

[Out]

I*b**(1/3)*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), b*x**3/a)/(3*sqrt(a)*gamma(
5/3)) - sqrt(3)*I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x**3/a)/(3*a**(1/6)*g
amma(4/3)) - I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), b*x**3/a)/(3*a**(1/6)*gamm
a(4/3))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int -\frac{b^{\frac{1}{3}} x - a^{\frac{1}{3}}{\left (\sqrt{3} + 1\right )}}{\sqrt{b x^{3} - a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(-(b^(1/3)*x - a^(1/3)*(sqrt(3) + 1))/sqrt(b*x^3 - a),x, algorithm="giac")

[Out]

integrate(-(b^(1/3)*x - a^(1/3)*(sqrt(3) + 1))/sqrt(b*x^3 - a), x)